当前位置: 首页 > 教育文档 > 学生学习

大学概率论知识点总结(精选4篇)

时间:

概率论知识点总结 篇1

第一章随机事件和概率

一、本章的重点内容:

四个关系:包含,相等,互斥,对立﹔

五个运算:并,交,差﹔

四个运算律:交换律,结合律,分配律,对偶律(德摩根律)﹔

概率的基本性质:非负性,规范性,有限可加性,逆概率公式﹔

五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯公式﹔·

条件概率﹔利用独立性进行概率计算﹔·重伯努利概型的计算。

近几年单独考查本章的考题相对较少,从考试的角度来说不是重点,但第一章是基础,大多数考题中将本章的内容作为基础知识来考核,都会用到第一章的知识。

二、常见典型题型:

1、随机事件的关系运算﹔

2、求随机事件的概率﹔

3、综合利用五大公式解题,尤其是常用全概率公式与贝叶斯公式。

第二章随机变量及其分布

一、本章的重点内容:

随机变量及其分布函数的概念和性质(充要条件)﹔

分布律和概率密度的性质(充要条件)﹔

八大常见的分布:0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、正态分布、指数分布及它们的应用﹔

会计算与随机变量相联系的任一事件的概率﹔

随机变量简单函数的概率分布。

近几年单独考核本章内容不太多,主要考一些常见分布及其应用、随机变量函数的分布

二、常见典型题型:

1、求一维随机变量的分布律、分布密度或分布函数﹔

2、一个函数为某一随机变量的分布函数或分布律或分布密度的判定﹔

3、反求或判定分布中的参数﹔

4、求一维随机变量在某一区间的概率﹔

5、求一维随机变量函的分布。

第三章二维随机变量及其分布

一、本章的重点内容:

二维随机变量及其分布的概念和性质,

边缘分布,边缘密度,条件分布和条件密度,

随机变量的独立性及不相关性,

一些常见分布:二维均匀分布,二维正态分布,

几个随机变量的简单函数的分布。

本章是概率论重点部分之一!应着重对待。

二、常见典型题型:

1、求二维随机变量的联合分布律或分布函数或边缘概率分布或条件分布和条件密度﹔

2、已知部分边缘分布,求联合分布律﹔

3、求二维连续型随机变量的分布或分布密度或边缘密度函数或条件分布和条件密度﹔

4、两个或多个随机变量的独立性或相关性的判定或证明﹔

5、与二维随机变量独立性相关的命题﹔

6、求两个随机变量的相关系数﹔

7、求两个随机变量的函数的概率分布或概率密度或在某一区域的概率。

它山之石可以攻玉,以上就是差异网为大家整理的5篇《大学概率论知识点总结》,希望对您有一些参考价值。

概率论学习心得 篇2

1、 随机试验

确定性现象:在自然界中一定发生的现象称为确定性现象。

随机现象: 在个别实验中呈现不确定性,在大量实验中呈现统计规律性,这种现象称为随机现象。

随机试验:为了研究随机现象的统计规律而做的的实验就是随机试验。 随机试验的特点:

1)可以在相同条件下重复进行;

2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能

结果;

3)进行一次试验之前不能确定哪一个结果会先出现;

2、 样本空间、随机事件

样本空间:我们将随机试验E的所有可能结果组成的集合称为E的样本空间,记为S。 样本点:构成样本空间的元素,即E中的每个结果,称为样本点。 事件之间的基本关系:包含、相等、和事件(并)、积事件(交)、差事件(A-B:包含A不包含B)、互斥事件(交集是空集,并集不一定是全集)、对立事件(交集是空集,并集是全集,称为对立事件)。事件之间的运算律:交换律、结合律、分配率、摩根定理(通过韦恩图理解这些定理)

3、 频率与概率

频数:事件A发生的次数 频率:频数/总数

概率:当重复试验的次数n逐渐增大,频率值就会趋于某一稳定值,这个值就是概率。 概率的特点:1)非负性。2)规范性。3)可列可加性。

概率性质:1)P(空集)=0,2)有限可加性,3)加法公式:P(A+B)=P(A)+P(B)-P(AB)

4、 古典概型

学会利用排列组合的知识求解一些简单问题的概率(彩票问题,超几何分布,分配问题,插空问题,捆绑问题等等)

5、 条件概率

定义:A事件发生条件下B发生的概率P(B|A)=P(AB)/P(A) 乘法公式:P(AB)=P(B|A)P(A) 全概率公式与贝叶斯公式

6、 独立性检验

设 A、B是两事件,如果满足等式P(AB)=P(A)P(B)则称事件A、B相互独立,简称A、B独立。

第二章、随机变量及其分布

1、 随机变量

定义:设随机试验的样本空间为S={e}。 X=X(e)是定义在样本空间S上的单值函数,称X=X(e)为随机变量。

2、 离散型随机变量及其分布律

三大离散型随机变量的分布 1)(0——1)分布。E(X)=p, D(X )=p(1-p)

2)伯努利试验、二项分布 E(X)=np, D(X)=np(1-p)

3) 泊松分布 P(X=k)= (?^k)e^(- ?)/k! (k=0,1,2,……)

E(X)=?,D(X)= ?

注意:当二项分布中n 很大时,可以近似看成泊松分布,即np= ?

3、 随机变量的分布函数

定义:设X是一个随机变量,x是任意的实数,函数 F(x)=P(X≤x),x属于R 称为X的分布函数 分布函数的性质:

1) F(x)是一个不减函数

2) 0≤F(x)≤1

离散型随机变量的分布函数的求法(由分布律求解分布函数)

连续性随机变量的分布函数的求法(由分布函数的图像求解分布函数,由概率密度求解分布函数)

4、 连续性随机变量及其概率密度

连续性随机变量的分布函数等于其概率密度函数在负无穷到x的变上限广义积分 相反密度函数等与对应区间上分布函数的导数 密度函数的性质:1)f(x)≥0

2) 密度函数在负无穷到正无穷上的广义积分等于1

三大连续性随机变量的分布: 1)均与分布 E(X)=(a+b)/2 D (X)=[(b-a)^2]/12

2)指数分布 E(X)=θ D(X)=θ^2

3)正态分布一般式(标准正态分布)

5、 随机变量的函数的分布

1)已知随机变量X的 分布函数求解Y=g(X)的分布函数

2)已知随机变量X的 密度函数求解Y=g(X)的密度函数 第三章 多维随机变量及其分布(主要讨论二维随机变量的分布)

1、二维随机变量

定义 设(X,Y)是二维随机变量,对于任意实数x, y,二元函数

F(x, Y)=P[(X≤x)交(Y≤y)] 称为二维随机变量(X,Y)的分布函数或称为随机变量联合分布函数离散型随机变量的分布函数和密度函数 连续型随机变量的分布函数和密度函数

重点掌握利用二重积分求解分布函数的方法

2、边缘分布

离散型随机变量的边缘概率

连续型随机变量的边缘概率密度

3、相互独立的随机变量

如果X,Y相互独立,那么X,Y的联合概率密度等于各自边缘的乘积

5、 两个随机变量的分布函数的分布

关键掌握利用卷积公式求解Z=X+Y的概率密度 第四章、随机变量的数字特征

1数学期望

离散型随机变量和连续型随机变量数学期望的求法 六大分布的数学期望

2方差

连续性随机变量的方差 D(X)=E(X^2)-[E (X )]^2 方差的基本性质:

1) 设C是常数,则D(C)=0

2) 设X随机变量,C是常数,则有

D(CX)=C^2D(X)

3) 设X,Y是两个随机变量,则有

D(X+Y)=D(X)+D(Y)+2E{(X-E(X))(Y-E(Y))} 特别地,若X,Y不相关,则有D(X+Y)=D(X)+ D(Y) 切比雪夫不等式的简单应用

4、协方差及相关系数

协方差:Cov(X ,Y )= E{(X-E(X))(Y-E(Y))} 相关系数:m=Cov(x,y)/√D(X) √D(Y)

当相关系数等于0时,X,Y 不相关,Cov(X ,Y )等于0 不相关不一定独立,但独立一定不相关

概率论学习心得 篇3

率论和数理统计的思想方法已经渗透到自然科学和社会科学的许多领域,应用范围相当广泛。所以概率论的学习对我们来说很重要,而我们该去如何学好概率论那?

一学期的概率论学习很快就过去了,经过了一个学期的概率论学习,让我了解到概率论是一门逻辑性很强的学科,学好概率论可以提高分析问题、解决问题,搜集和处理信息的能力。怎样才能学好概率论?可从以下方面着手。上课认真听讲,课后及时复习。适当做题,养成良好的解题习惯。学习新知识,要特别重视课上的学习效率,寻求正确的学习方法。上课时要紧跟老师思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同,同时要注意做笔记。课后做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,不要边做题边翻课本,那样只是暂时的明白,离开书什么也不知道,认真独立完成作业,勤于思考。还应该自己独自认真分析题目,尽量自己解决所有老师安排的习题,适当还做点相关资料。经常进行整理和归纳总结。要多做题目,熟悉各种题型。首先要从基础题入手,以课本上的例习题为准,再找一些课外的习题,以帮助开拓思路,提高自己分析、解决问题的能力。对于一些易错题,要备有错题本,记下自己的错误解法并且写上正确的解法,两者比较找出自己的错误所在,及时更正。平时要养成良好的解题习惯,让自己的精力高度集中,思维敏捷。如果平时解题时随便、粗心、大意等,所以在平时养成良好的解题习惯是非常重要的。

学习兴趣是学生心理上的一种学习需要,而学习需要是学习动机的主要因素,学习动机则是进行学习的内驱力。概率论作为文化基础课,多数学生认为其课抽象、枯燥无味,无新鲜感而应用价值很大。激发起学习的兴趣,这样会有高的学习质量。因此在概率论的学习过程中,要始终注意培养学习的兴趣,使自己既学到必要的知识,又享受到一定的学习乐趣,达到提高学习质量的目的。然而各门课程的特点不同,培养自己学习兴趣的途径和方法也不尽相同,但是深入钻研教材,根据教材的内容和特点,挖出潜在的有利于培养自己学习兴趣的积极因素并加以充分利用,这一点是共同的。由于《概率论与数理统计》所研究的问题渗透到我们生活的方方面面,每一个理论都有其直观背景。因此,在学习中,应该致力于从多方面入手,去激发自己的兴趣,使自己在体会每个基本概念、定理和公式的产生过程中,掌握概率论与数理统计解题的思想和方法。学生实际上处于一种被动接受教师所提供知识的地位,所以我们要主动去提高自己的自学能力,培养了自己分析、辩论、理论联系实际、与他人合作等综合能力。总之,在概率论与数理统计学习中,教师“施教之功,贵在引导”,即引导学生去发现生活中的随机现象所隐藏的规律性,掌握概率论与数理统计研究问题的方法,而重点还在于我们自己。

概率论与数理统计是一门有着广泛应用的数学学科,因此在教学中我们应准确把握这门课与自己所学专业的结合点,突出其应用性。在学习过程中,将统计理论与实际问题相结合,培养自己用所学的知识去解决具体实际问题的能力及理论联系实际的作风,从而使自己进一步深化理解统计中的基本概念和基本原理。用时也要培养自己的综合素质和创新能力,仅靠课内教学是不可能完全掌握的。在学习中,要紧紧围绕自己的目标,把课内教学和课外活动作为一个整体来考虑,进行优化设计,形成结合。学生自主成立的概率论与数理统计课外兴趣小组。小组活动的宗旨,是利用课余时间,通过定期组织活动,激发大家的学习兴趣,探讨热点、难点问题,加深对理论知识的学习和理解,拓宽知识面,锻炼思考问题和研究问题的能力。组织课外兴趣小组这种方法对于提高学习效果,提高学员综合素质和创新能力有显著成效。

经过老师和学生自己的共同努力,相信一定会在学习概率论中取得好的成效的。

概率论学习心得 篇4

在大二刚开学我接触到了概率论与数理统计这门课程,虽然在高中时已经接触到了许多跟概率相关的东西,比如随机事件、古典概型以及一系列的计算方法但是在接触到更加高深的层次后还是有许多不一样的感受。

在课程开始之初老师就告诉我们这门课不是很难,关键还在于上课认真听讲。通过老师的简单介绍,我了解到概率论与数理统计是研究随机现象统计规律性的一门数学学科,其理论与方法的应用非常广泛,几乎遍及所有科学技术领域、工农业生产、国民经济以及我们的日常生活。对于作为信息管理与信息系统专业的我,其日后的帮助也是很大的,尤其是对于日后电脑方面的操作有着至关重要的辅助作用。

在这门课程中我们首先研究的是随机事件及一维随机变量二维随机变量的分布和特点。而在第二部分的数理统计中,它是以概率论为理论基础,根据试验或者观察得到的数据来研究随机现象,对研究对象的客观规律性做出种种估计和判断。整本书就是重点围绕这两个部分来讲述的。初学时,就算觉得理解了老师的讲课内容,但是一联系实际也会很难以应用上,简化不出有关所学知识的模型。在期末复习中,自己重新对于整个书本的流程安排还有每个章节的重点重新复习一遍,才觉得有了点头绪。

在长达一个学期的学习中,我增长了不少课程知识,同时也获得了好多关于这门课程的心得体会。整个学期下来这门课程给我最深刻的体会就是这门课程很抽象,很难以理解,但是这门课程给我带来了一种新的思维方式。前几章的知识好多都是高中讲过的,接触下来觉得挺简单,但是后面从第五章的大数定理及中心极限定理就开始是新的内容了。我觉得学习概率论与数理统计最重要的就是要学习书本中渗透的一种全新的思维方式。统计与概率的思维方式,和逻辑推理不一样,它是不确定的,也就是随机的思想。这也是一个人思维能力最主要的体现,整个学习过程中要紧紧围绕这个思维方式进行。这些都为后面的数理统计还有参数估计、检验假设打下了基础。其次,在所有数学学科中,概率论是一门具有广泛应用的数学分支,是一门真正是把实际问题转换成数学问题的学科。在最后一章中,假设检验就是一个很好的例子。由前面所讲的伯努利大数定律知,小概率事件在N次重复试验中出现的概率很小,因此我们认为在一次试验中,小概率事件一般不会发生,如果发生了就该怀疑这件事件的真实性。正是根据这个思想去解决实际中的检验问题,总之概率与数理统计就是一门将现实中的。问题建立模型然后应用理论知识解决掉的学科,具有很强的实际应用性。

在整个学期学习过程中,老师生动的讲解让我一直对这门课程保持着浓厚的兴趣,课上总是会讲解一些实际中的问题,比如抽奖先后中奖概率都一样,扔硬币为什么正反面的概率都是二分之一……一些问题还会让我们更理性的对待实际中的一些问题,比如赌博赢的概率很小,彩 票中奖概率也是微乎其微,所以不能迷恋那些,不能期望用投机取巧来赚取钱财。总之,概率论与数理统计给予我的帮助是很大的。不仅拓展了我的数学思维,而且还帮助我把课堂上的知识与生活中的例子联系了起来。当然,这些与老师的辛勤劳动是分不开的,在此,十分感谢马金凤老师对我们一学期以来的谆谆教诲。